Vedic Indians in Iraq in 5000 BC and The rise of Sumerian Civilization
by P Priyadaarshi

Sumer was located in South Iraq where the rivers Tigris and Euphrates produce marshland in the region just before the delta. In the sixth millennium BC, the region was dry and hot yet usually got flooded by the end of the harvesting season from the water coming down both the rivers. The catchment area of the Tigris and Euphrates rivers were fed by the winter monsoon, usually leaving snow on the mountains to melt at spring season. Hence the floods came just about the end of the winter or beginning of the summer, when barley was due to be harvested. This flood destroyed the crops. This had kept the region in perpetual economic darkness, until some new technology appropriate to the climate arrived here.
Before 5500 BC, the people were hunter-gatherers in this fish, bird and small game rich region. Thereafter people from the east came with newer ideas and technologies. Uruk was one of the oldest cities of Sumer, which suddenly emerged about 4000 BC (radiocarbon-14 date; Crawford 2004:23). [Crawford, Harriet, 2004, Sumer and Sumerians, CUP, Cambridge.].

There is evidence that the Sumerian Civilization took off at this time with the help of an agro-pastoral economy which had arrived from India and which relied heavily on the domestic water-buffaloes for the cultivation of rice in the marshy lands and water logged areas. Aquatic breeds of rice grow well in the water-logged lands of the marshes, and they are harvested in autumn, i.e. much before the winter monsoon. Water-buffaloes are happy to live in the marshes and their bulls pull the ploughs and the carts well.


Figure: A modern Marsh Arab Village (Source:

Indian Buffalo in Sumer

While the linguistic comparisons had not thrown any light on this Indo-Sumerian connection, recent DNA studies have clarified a lot. The three viz. the buffalo, the cattle and rice had migrated to Sumer from northwest India between 5000 BC and 4000 BC, giving rise to a new economy which led the region into the earliest phase of urbanization and subsequently larger state formation. Marshall identified the water-buffalo in many Sumerian pictographs and texts, and also the Indian wild bull Bos gaurus in a tablet (No. 312) excavated from Jemdet Nasr near Kish (Marshall 1996:453). These tablets also clarified that the Sumerians used horse at least since 2600 BC as has been depicted in the pictograms (anšu-kur, the mountain-ass, or ‘Iranian ass’; because mountain = Zagros of Iran in Sumer). Sir John Marshall mentions that the water-buffalo disappeared from Sumer at about 2300 BC, during the period of the King Sargon of Akkad (Marshall 1996:453). This can be expected because there had been a general trend of aridity in the third millennium reaching its peak at 2200 BC (4.2 Kilo Event). Water buffaloes cannot survive dry hot climates.
It is known by now that the water-buffalo was domesticated in India in the eastern part of the country which was kept wetter by the Bay of Bengal monsoon and the winter monsoon during the Early Holocene (Satish Kumar 2007; Pal 2008:275; Thomas 1995:31-2; Groves 2006). In fact there is “evidence that both river and swamp buffaloes decent from one domestication event, probably in the Indian subcontinent.” (Kierstein 2004). It is at the very earliest Neolithic period that the water-buffalo had reached Mehrgarh as domestic animal (Possehl 202:27; J.F. Jarrige 2008:143; Costantini 2008:168). In northwest India, Mehrgarh received most of its rains from northern monsoon called the winter monsoon, which was strong then and hence the buffaloes could thrive at Mehrgarh as evident from the archaeology. In fact the Mehrgarh region was wet enough to support not only the water-buffalo, but also elephant, rhinoceros, swamp-deer and wild pig which prefer to live in the wetlands (Costantini 2008:168).
However at the Early Holocene, areas to the south of Kachi plain in NW India, and southern Iran received only scarce rains from the extremely weak southwest monsoon, which was not good enough for the survival of this water-adapted animal in this area. However subsequent to 5500 BC, when the south-western or the Arabian Sea monsoon built up strong, the southern Indus-Sarasvati region and the western coast of India started getting good rains from the improved south-western monsoon, the buffalo-pastorals arrived in the southern Indus Valley region too. From 5500 calBC onwards we get bones of the hunted water-buffalo from Bagor in southern Rajasthan (Possehl 2002:32), and then the buffalo continues in the Harappan culture becoming very important in the Mature Harappa (Possehl 2002:63).
Archaeological evidence of water buffalo from Harappa region comes in the form of buffalo-horn motif of deities and depiction of this animal in the seals. We get such motifs from a pot recovered from Kot Diji dating to Early Harappan-mature Harappan transition (Possehl 2002:73), and from a broken terracotta cake recovered from Kalibangan dating to mature Harappa period. A Period II pot from Lewan depicts the horns of the water-buffalo (Possehl 2002:142-145). Rojdi too had domesticated buffalo (Possehl 2002:83). Buffalo bones have been found from the Ahar-Banas site of Rajasthan (McIntosh 2008:124).
But when and why the Indian buffalo-farmers migrated to South Iraq’s province of Sumer is the real question. The time between 5000 BC and 4000 BC was full of torrential rains for West India region fed by the southwest monsoon. The sea level had reached higher than today’s at about 5000 BC leading to the sluggish drainage of the rivers (Kumaran:22pdf). This was causing massive flooding and death on annual basis forcing the people of the region to migrate to the further west in search of lesser flooded lands.
The dominant presence of the Indian water buffalo in the Sumerian culture is enough evidence to say that the Indian farmer-pastoralists had led the transformation of this society by elite-dominance. Yet there is no evidence of the language change having taken place by this elite-dominance.
Vedic Influence
However the Sumerian divinity is entirely Vedic, with the gods and goddesses even conserving the Vedic Indo-European names (Whittaker 2009:127-140). Even where the name has been changed the story has stayed the same. In the Sumerian, Kur is the ‘serpent’ and it also means the ‘mountain’, which has stolen all waters in its mouth. The same word kur also means the ‘land’. The serpent way killed by the warrior god to release the waters (Kramer 1961:76-80). This myth is clearly the Rig-Vedic myth of the demon Vṛtra who has stolen the waters within it lying over the mountain range, and is killed by the God Indra to release the trapped waters. This has been considered the metaphoric reminisce of the Himalayan glacial having stolen the nature’s waters and causing draught like conditions during the terminal part of the glacier period (Priyadarshi 2014b; RV 1.32.1-11; 4.28.1; 4.19.1-8; Bhagwan Singh 1987; also see Kazanas 2009). There have been also suggestions that the Sumerian script and astronomy too had been imported from India (Priyadarshi 2007).”Milking+the+udder+of+heaven:”&source=bl&ots=uMom4-Y2nQ&sig=KhA8WZMOVY5q9-G9jk7KagHQqMk&hl=en&sa=X&ei=k5XTVIjrOoOXuATy4IHIAQ&ved=0CB8Q6AEwAA#v=onepage&q=%22Milking%20the%20udder%20of%20heaven%3A%22&f=false


Indian Rice in Sumer
The cultivation of rice in the marshes of southern Iraq, which revolutionized the whole region about 4000 BC has been generally bypassed by the modern historiographers. However more and more people are now becoming aware that the Marsh Arabs which inhabit these marshes have been cultivating rice in Iraq since the rise of Sumer (Vinding 2004:326):

“They traditionally constructed artificial islands, made of layers of reed and mud, on which they constructed their homes using woven reeds. They fed the sprouting reeds to their water buffalo and they used the dung of the water buffaloes for the fuel. They depended on fishing and hunting and they planted rice and tended date palms along the edges of the marshes.” (ibid).


(Source: )

This same is true even today of many of the marsh-dwellers of Bihar and Bengal’s Gangetic marshes. Not only that the ancient Mesopotamian buffaloes depicted in the seals have their native home in India.

Bubalus arnee

(Bubalus arnee which lives in the wild in India and is the source for the domestic river as well as the swamp buffaloes)

The ancient Sumerian buffaloes as in seal are in fact from this stock. This has been demonstrated genetically too :

ibni sharrum seal

Although there has been linguistic identification of ‘rice’ from Assyrian cuneiform texts (Thompson 1939), the conclusive evidence of the presence of the Indian rice in Iraq comes from DNA studies. A recent DNA study of the Iraqi rice has clarified that there is exact match of some Iraqi rice DNAs with the Indian rice DNAs proving the migration of the Indian domestic rice to South Iraq. “Also, the SSR marker (RM1) results confirmed that Amber and Daawat were very closely related, which means that the origin of Amber might be come from Indian ancestors the same as Daawat variety.” (Younan 2012). Agrama found in a worldwide sampling that 68% of the Iraqi rice was of the eastern Indian sub-species of rice named Oryza sativa aus. The rest was mainly aromatic which too originated in northwest Indian Himalayas (Agrama 2010:252). The eastern Indian rice O. s. aus grows best in marshes and water-logged areas. xxxx

It has become clear from the DNA studies that India was home of two important sub-species of cultivated rice and one wild semi-cultivated wild breed of rice. These are Oriza sativa indica and O. s. aus and the Oriza sativa nivara respectively (q.v.). It is no more held now that the Indian rice has come from China and the earliest rice-cultivating Pottery Neolithic sites of the world have been found in the Ganga Valley. From the Ganga Valley its cultivation reached northwest India (Hakra-Ghagghar) by 5000 BC or 5500 BC when the weather of NW India became humid enough (Tewari 2008; Shinde; Priyadarshi 2014a, 2014b).
But the Arabian Sea monsoon was very strong up to at least 4000 BC and it is likely that the Indus Valley, particularly the western part of it, was full of perennial floods for about 1000 years or more between about 5000 BC and 4000 BC. It has been even known that the Indus Valley Civilization started growing faster only after the rains had decreased and somewhat safer and drier climate had arrived by 4000 BC in the region. “Harappan urbanism emerged on the face of a prolonged trend towards declining rainfall”, notes Madella and Fuller (2006:Abstract). Giosan also wrote: “adaptation to aridity contributed to social complexity and urbanization” (2012:E1693). Thus the early humid flooded phase was not conducive to high civilization formation, and thus it promoted westward migration of people in search of drier better places to keep their livestock and do farming.

It is during this flood time that many of the Indian farmers and pastoralists from the Indus-Sarasvati region migrated westward to the places like Sumer along with their caravans of buffaloes, cows, bulls, goats and rice to avoid being eliminated by the devastating floods. Sir John Marshall examined the Sumerian seals and tablets. He was able to identify the Indian bison (Bos gaurus) and the Indian water-buffalo depicted on the tablets at Jamdet Nasr (Marshall:453).
Recently a DNA study of the Marsh Arabs, that inhabit the Sumerian region today, was done for the purpose of identifying the Indian connection, if any, of this population of South Iraq. The Marsh Arabs are considered to have arrived there from somewhere else, and some legends suggest India. The DNA study of the Marsh Arabs residing today in the former Sumer region showed that majority of the ethnic group carries the Semitic specific male DNA, yet up to almost 8% can be traced to India. Indian lineages found in the Marsh Arabs included: L-M20xM76 (0.7%); Q-M242 (2.8%); R1-M269 (2.8%) and R2-M124 (1.4%): all together adding up to 7.7% (Al-Zahery 2011:13pdf; also p. 3pdf, Fig. 2). In an earlier study, Al-Zahery had demonstrated the presence of mtDNA U7 in Iraq, which is a marker of past Indian migration to Iraq (Al-Zahery 2003:10pdf).
It may be noted that the R1a-M17 is an Indian Y-DNA haplogroup (Underhill 2010), which is absent from the Marsh Arab DNAs, yet is present up to 8.4% in the Iraqi population (Al-Zahery 2011: Fig 2). In our examination it was inferred that the R1a migration had taken place out from Pakistan in response to the cold-dry weather of the 8.2 Kilo event (6.2 BC). This migration took place along the northern Iran which was wetter then due to good winter monsoon, and reached North Iraq, but did not reach South Iraq. Hence the R1a is absent from the Sumerian region (South Iraq) yet present in the northern Iraq.
In addition to these there is the presence of J2*-M172 at the frequency of 3.5% in the Marsh Arab population. This male DNA lineage originated in the Uttar Pradesh in North India (Sahoo 2006; Priyadarshi 2010). It was associated with the earliest Holocene migration of the Mesolithic/ Neolithic interface era (say about 10,000 BC) out of India which came out with the Mus musculus domesticus species of mouse along the Iranian coast, and on reaching South Iraq split into two, one going north to Iraq and Kurdistan and the other reaching the Levant went further into the Mediterranean islands, Italy and the Balkans (Priyadarshi 2012). The association of J2-M172 with the spread of Neolithic (farming-culture) in the regions with good rainfall in Iraq, and also in the southern Europe, is well attested. “While J2-M172 has been linked to the development and expansion of agriculture in the wetter northern zone and is also considered the Y-chromosome marker for the spread of farming into South East Europe” (Al-Zaheri 2011:10pdf).
Thus we can see that about 8% of the male Marsh Arab population consists of DNAs of Indian origin. When these Indians went there, they were rich with the wealth of cattle and buffalo. They had the bags of rice seeds and the art of cultivating rice. From the female lineage or the mitochondrial DNA side, we find a larger migration from India to Sumer having taken place. Today it is represented in the Marsh Arab population by the presence of the mtDNA U7, R2 and M (Al-Zaheri 2011:12). One particular sample was found to have mtDNA of the type M33a2a (GenBank accession number: JN540042), which is found in the Uttar Pradesh state of India (ibid). Thus the migrations from India were not male exclusive, but they consisted more of the females. This is understandable, because women play a greater role in paddy cultivation as well as buffalo keeping.
Once the Sumer civilization took off with the help of Indian water-buffaloes and rice cultivation in the South Iraq’s marshes, males of some Semitic tribes arrived to live in the area, and married in this community. They could outnumber the original population. This can be noted today by the 72.8% frequency of Hg J-Page08 in the Marsh Arab population in the male lineage side (Y-chromosomal DNA). The scientific examination reveals that this population (J-Page08) expanded in the region at 4.8 years ago, or about 2,800 BC (Al-Zawahri: Table 2 on page 11). They had arrived there from the northwest (Al-Zaheri 2011:Fig 6). We know from the history that a powerful wave of the Semitic speaking people known as the Akkadian arrived in the region and settled just to the north of the Sumerian marshland establishing an empire about the middle of the third millennium. The Hg J-Page08 male DNA could have been the dominant lineage of the Akkadians. Hence we can say that the Semitic arrival, although male alone, was later than the Indian arrival to the region and it outnumbered the original Sumerians genetically and wiped them out linguistically.

See also: